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Abstract—Histopathology images remains one of the leading
prognostic markers for diagnosis, tracking and treatment of Prostate
Cancer. Prostate cancer tissue micro arrays with H&E (Hematoxylin
and Eosin) staining images are used to estimate the prevalance of the
diesease in the patient. Stages of prostate cancer are differentiated
by Gleason Grading given to a patient’s sample by the pathologist.
Grading a sample requires highly trained pathlogist and due to the
subjective nature and heterogenity of the cells present in the images,
there is significant variability amongst pathologist accessments for
a single patient. In recent years deep learning has shown significant
improvement in analysis of medical images. In this study we will
be applying deep learning to automate Gleason Grade scoring. Two
paths were explored :- 1) Segmentation of Patches 2) Classification of
Patches of the sample to different grades. Code available at GitHub
Directory. Gleason Score project.

I. INTRODUCTION

Prostate cancer is the second leading cause of cancer deaths in
America. There is a 12 percent chance that a person is going to
be diagonsed with prostate cancer in their life time. So accurate
diagnosis, tracking disease progression and plan of treatment are
very important. Histopathology images is the leading prognostic
marker for diagnosing prostate cancer but due to the intra-
variability amongst pathologist accessment of a patients samples,
misdiagnosis and mistreatment are possibilities which cannot be
ruled out.

Gleason score for each cell or pattern is given on a scale
from I(well diffrentiated) to S(poorly differentiated). The final
gleason score to sample is given by adding scores of 2 most
predominant(Primary and Secondary) cells/tumors found in the
sample. So for example if a patients sample as cell patterns of only
gleason grade 3, then gleason grade will be 6, but if the patient
has cell pattern of 3 and 5, then gleason score is 8. Detecting cell
sections in the slide for different gleason score decides the final
Gleason Grade. Based on the final Gleason Score, there are five
grades for progression of the disease:-

1) Grade 1: Gleason Score 6 or lower, low grade cancer,
Cancer might grow slowly if it grows at all.

2) Grade 2: Gleason score 3 + 4 = 7 , medium grade cancer,
Cancer might grow slowly.

3) Grade 3: Gleason score 4 + 3 = 7 , medium grade cancer,
Cancer might grow at a moderate rate.

4) Grade 4: Gleason score 8 , high grade cancer, Cancer might
grow moderately but has a potential to grow faster.

5) Grade 5: Gleason score 9 to 10, high grade cancer. Cancer
likely to grow faster.

With the above description it is clear that detecting gleason
score 3,4 and 5 are very important and, differentiating them
because a difference of one grade can mean difference between
medium grade and high grade cancer. In this study we will
explore some possible directions for automating the Gleason

Grading of a patients sample. Because of the huge size of
the training images(approximately 5120 x 5120) and very few
training samples, any segmentation model for this input size will
have a huge number of parameters and very hard to train on a 4GB
graphics card which is available on CADE Machines. Downsam-
pled images might be trainable but downsampled images might
loose details which might be useful in differentiating between
different gleason score. So different techniques were tried to solve
the problem which can be divided into 2 categories:-

1) Segmentation Type Techniques :- 256x256 patched from
training set were sampled with and without overlap, sam-
pling the mask’s at the same stop as well. These resulted in
creating thousands of samples of 256x256 rather an a few
hundred of size 5120x5120. U-NET [5]] type architectures
for different number of initial channels were trained. Some
Extentions to U-NET architectures were also trained like
with resnet-18 and resnet-34 acting as encoder backend of
the U-Net architecture. Other extension and detail experi-
ments will be listed in the section III.

2) Classification Type Techniques :- As we discussed in the
section above it is very important to find patches on the
slides with specific gleason score. It’s not that important that
we find the exact demarcations of each type of cells present
in the slide, because the final Gleason score depends on the
most prominent cells present. So Training a classification
model to recognize patches of each type of cell will also
provide a reliable estimate of the final Gleason score. This
type of technique was tried in [2[]. More Details in Section
Iv.

Due to the limitation of the Graphics Card size 4GB, most of the
dataset’s created for experiments(as explained above) can only
run for a few epochs, sometimes for segmentation datasets it
couldn’t even complete 1 epoch and run into resource constraint.
So a distributed training was used to train the model. Any dataset
which had huge amount of input data was split in multiple
training and validation subsets. After training on one subset
the model and optimizer states were saved and then reloaded
again for training on different subsets. This was done for all
segmentation experiments and Classification experiments with
non-zero overlap.

In Section II, the datasets used and data preprocesing for segme-
nationa and classification are explained. Section III explaines all
the segmentation experiments and results. Section IV details all
the classification experiments and results. Section V is a dicussion
on Future Work.

II. DATASETS

Primarily 2 datasets were used for experimentation. 1) Gleason
Score Grand Challenge Dataset [4] [6]] 2) Harvard Dataset [1]


https://github.com/tushaarkataria/ECE6960-Deep-Learning/tree/main/project

A. Gleason Score Grand Challenge Dataset:- Dataset 1

We have 244 traing images of varying sizes but the most

common size of the image is 5120 x 5120. We have segmentation
mask count from each pathologist 1 to 6 are 244, 141, 242, 244,
246, 65 respectively. Each pixel is gleason Score between 1 to 5.
For this dataset most of the pixels are given gleason score of 1,3
and 4. There are almost no mask with pixel value 2 and there are
very less examples of gleason score 5. Masks with pixel value
0 are background. On the challenge page it is advised to create
a single mask using all these mask using majority voting. But
there are a few images where none of the pathologist agree on
the gleason segmentation resulting in bad final masks with every
pixel treated as backgound. We have removed these samples from
the dataset because these samples are not reliable and can cause
confusion for the trained model. An example of the dataset is
shown in Figure [T}
To get an estimate of how much agreement is there between
pathologist for segmentation present, we found out the average
cohen’s kappa coefficient between each pathologist over all the
training samples common between them (Cohen kappa also
includes background label). Scores are listed in the table below
[l Cohen kappa are symmetric, so table doesn’t need to be filled
fully.

Pathologist 2 3 4 5 6
1 0223 | 0452 | 0.52 0.49 0.50
2 - 0.23 | 0.266 | 0.269 | 0.259
3 - - 0.497 | 0.568 | 0.447
4 - - - 0.587 | 0.578
5 - - - - 0.55

TABLE I: Cohen’s Quadratic Kappa Coefficient for Grand Chal-
lenge Dataset

We can clearly see from the table [[] that there is significant
variability between pathologist accessment of a single sample.
This is why automating gleason score prediction is important
that will remove the personal bias from the output prediction,
giving reliable estimate of the Gleason Grade. For this dataset
testing segmentation mask or gleason score of the slide are not
available. So for all the experiments val dataset values metrics will
be reported. I tried submitting results on Gleason Grade page but
it displayed no results on the leaderboard.

(a) Image (b) Mask Image

Fig. 1: Training Sample from Dataset I

B. Harvard Prostate Cancer dataset: Dataset 11

The second dataset is Harvard prostate cancer dataset [[1] which
has 641 training samples with their segmentation mask. Test set

consist of 241 samples with segmentation mask obtained from 2
pathologist. All the training and testing images are of size 3100 x
3100. Cohen kappa agreement for the 2 annotators segmentation
mask is 0.52538381. For this dataset 2 Testing segmentation
masks are available for different pathologist. Testing data was
used only once at the end of the experiments to check metrics
S0 as not to bias any hyperparameter search. More details on the
dataset can be found in [2]]. An example of the dataset is shown
in Figure [2]

(a) Image

(b) Mask Image

Fig. 2: Training Sample from Dataset 2

C. Data preprocessing for Segmentation

2 Dataset were created using this big dataset. Image Patches
and corresponding mask of size 256x256 were sampled from
training images with a overlap of 0 and 128 pixels . A mask
label was given to each sample, label of most frequent pixel
value in mask. These label value was used to create Training and
Validation sets using stratified sampling. Stratified sampling was
used to create Training and Validation sets with similar imbalance
of each class. All the sampled images created were saved as *.png’
images so as to create a lossless dataset.

D. Data Preprocessing for Classification

Patches for size 256x256 were sampled from training images

with a overlap of 0, 128 and 192 pixels . If the mask of the patch
had more than 95% pixels of the same grade or score, it was
kept in the training set and assigned that grade, all other patches
were discarded. The histogram of resulting labels for the dataset
thus created is shown in figure [3} As we can clearly see a large
number of samples are background patches. Label 5 had very less
number of samples in the training set. With overlap, the number
of samples for each class increased but the ratio still remained
similar. DataSet II is more balanced than Dataset I. Training and
Validation sets were created with a 80-20 split usind stratified
sampling, so that both training and validation sets are equally
imbalanced.
Now using the above sampling technique and overlap one might
say that validation sets have a higher chance of seeing similar
patches from the same slide, so these models might not gen-
eralize well to unseen data. So 2 different datasets were also
created where training and validation sets have no common slides
between them.

III. SEGMENTATION EXPERIMENTS

The most popular segmenation model for medical datasets is
U-Net [5]. This model was compared with a few variations in
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Fig. 3: Histogram of Labels for resulting Classification datasets.

Fusion Convolution Layer

Fig. 4: Unet-Fusion Architecture

architecture, U-Net acts as a baseline in these experiments. The
different variations tried are :-

1) Unet with Resnetl8 Backbone:- The unet encoder stage
is replaced by trained layers of resnet 18. Skip connection
and other details are kept the same.

2) Unet with resnet34 Backbones:- Similar to the variation
above, intead resnet 34 layers were used.

3) Unet with Modified skip connections :- The encoder
features instead of just plainly transferred to decoder side
are passed through a convolutional layer.

4) Unet with fusion Extension:- The Skip Connections are
removed. Instead all the different subencoder features are
fused using convolutional layers and upsampling as used in
[9]. The features thus created are concatenated at the final
decoding stage just after the final upsampling stage of the
unet architecture. Architectural diagram is shown figure [

These five models are compared with each other using F1-
Score and IOU with a threshold of 0.5. The F1 Score Reported
are by an F1 score implementation on Tensors using a threshold
of 0.5, this was done to speed up the training. Using F1-Score
from sklearn was slowing down the Training process.

A. Dataset 1

Training Fl-score & IOU-score and Validation Fl-score &
IOU-score on the dataset are shown in Table [l and Table
M Overlapping patches didn’t make a difference in the final
segmentation metrics. U-Net type architecture with resnet-18 and
resnet-34 backbone work best amongst all the models compared.
Unet with modified skip connections and u-net fusion architecture
perform better than simple u-net.

B. Dataset 11

Testing F1-Score, IOU score when compared with given testing
pathologist segmentation is shown in Table Again with this
dataset using pretrained backbone of resnet in U-net architecture
performed better than other architectures. Models trained were

Model TrainF1 | TrainlOU | ValF1 | VallOU
U-net 0.8050 0.6776 0.8175 | 0.6971
U-resnet-18 0.8398 0.7479 0.8568 | 0.7900
U-resnet-34 0.8409 0.7474 0.8440 | 0.7634
U-Modified-skip 0.8040 0.6770 0.8345 | 0.7255
U-Fusion 0.8007 0.6825 0.8272 | 0.7138

TABLE II: Segmenation Metrics for Dataset I when no overlap
between patches. Above are the values for best trained models.

Model TrainF1 | TrainIOU | ValF1 | VallOU
U-net 0.7962 0.6664 0.8146 | 0.6873
U-resnet-18 0.8374 0.7469 0.8674 | 0.8187
U-resnet-34 0.7938 0.6829 0.8324 | 0.7464
U-Fusion 0.8122 0.6974 0.8618 | 0.7629
U-Modified-skip 0.8144 0.6920 0.8348 | 0.7316

TABLE III: Segmenation Metrics for Dataset I when 128 pixel
overlap between patches

more aligned with Ist pathologist more than the 2nd pathologist.

Model TestF1-1 | TestlOU-1 | TestF1-2 | TestlOU-2
U-net 0.8057 0.6788 0.7781 0.6418
U-resnet-18 0.8324 0.7216 0.8034 0.6837
U-resnet-34 0.8328 0.7219 0.8033 0.6828
U-Fusion 0.8083 0.6831 0.7813 0.6474
U-Modified-skip 0.8243 0.7069 0.7957 0.6685

TABLE IV: Segmenation Metrics for Dataset II when no overlap
between patches.

Model TestF1-1 | TestlOU-1 | TestF1-2 | TestlOU-2
U-net 0.7488 0.6027 0.7293 0.5780
U-resnet-18 0.7740 0.6361 0.7463 0.6005
U-resnet-34 0.7982 0.6695 0.7722 0.6360
U-Fusion 0.7791 0.6422 0.7565 0.6130
U-Modified-skip 0.7659 0.6247 0.7449 0.5980

TABLE V: Segmenation Metrics for Dataset II when no overlap
between patches. Using Dice loss.

IV. CLASSIFICATION EXPERIMENTS

For Classification experiments the following models were used
i) resnet18 ii) resnet34 [3] iii) Mobilenet [7]] iv) MNASNet [8]].
Data augmention for these experiment was random horizontal,
vertical flip and random affine with both rotation and translation.
Without Data augmentation these models were overfitting the
data. The metrics used are accuracy and ROC AUC score for
mutliclass classfication using marco averaging.

A. Dataset I

Training Accuracy, Validation accuracy and Validation ROC
are listed in Table [VI] and Table [VIIl Table [V1l shown the result
when patches are sampled with no overlap between each other.
Training and validation dataset are created from all patches thus
sampled. Table show results when patches are sampled with
128 pixels overlap. Overlap changes the training and validation
accuracy by a fairly significant margin. Looking at the confusion
matrix the model was easily able to classify background, Gleason
Grade 1, and Gleason Score 5. But almost all models had most
difficulty in classifying patches of Gleason Score 3 and Gleason
Score 4. For both overlapping anf non-overlapping cases, resnet-
34 pretrained model works best.



Model Train Accu | Val Accu | Val ROC
resnet18 0.8976 0.8755 0.9738
resnet34 0.9689 0.8775 0.9690

MobileNet 0.9177 0.8748 0.9600
MNASnhet 0.8624 0.8584 0.9490

TABLE VI: Validation and Train Accuracy When patches for
datset can be taken from the same slides between Training and
Validation sets. Dataset I. No overlap between patches.

Models No Overlap Overlap 128 pixel
Test Accu | Test ROC | Test Accu | Test ROC
resnet18 0.6881 0.8456 0.7122 0.8639
resnet34 0.6792 0.8380 0.6982 0.8581
MobileNet 0.6923 0.8594 0.7118 0.8724
MNASnhet 0.6952 0.8727 0.7106 0.8825

TABLE X: Testing Accuracy When slides were common between

Model Train Accu | Val Accu | Val ROC
resnet18 0.9302 0.9258 0.9885
resnet34 0.9392 0.9348 0.9909

MobileNet 0.8389 0.8543 0.9333

Training and Validation sets but different overlap. Dataset II.
Pathologist 1.

TABLE VII: Validation and Train Accuracy When patches for
datset can be taken from the same slides between Training and
Validation sets. Dataset I. Patched Overlap for 128 pixels.

B. Dataset 11

Testing Accuracy, Testing ROC for each pathologist are listed

in Table [VIII| when patches are sampled without overlap. The
training and validation accuracies are quite high when compared
to testing accuracies in the Table. MNAS-net is the best perform-
ing model based on accuracy and also ROC. With overlap the
data is listed in Table [X]| The changes in accuracy due to overlap
doesn’t changes that much.
When the whole dataset is divided before sampling patches, the
classification testing accuracies are listed in Table With this
new sampling method of patches it was expected that models
trained will perform better on the Testin data. But that was not
the case for all models. Only resnet34 model performed well.

Models No Overlap Overlap 128 pixel
Test Accu | Test ROC | Test Accu | Test ROC
resnet18 0.6130 0.8039 0.6437 0.8314
resnet34 0.6102 0.8000 0.6313 0.8231
MobileNet 0.6210 0.8249 0.6419 0.8450
MNASnet 0.6249 0.8500 0.6379 0.8559

Model Testl Accu | Test2 Accu | Testl ROC | Test2 ROC
resnet18 0.6881 0.6130 0.8456 0.8039
resnet34 0.6792 0.6102 0.8380 0.8000

MobileNet 0.6923 0.6210 0.8594 0.8249
MNASnet 0.6952 0.6249 0.8727 0.8500

TABLE VIII: Testing Accuracies and ROC for different patholo-
gist when slides were common between Training and Validation
sets. Dataset II. “Testl’ corresponds to testing accuracy compared
with pathologist 1, and ‘Test2’ corresponds to testing accuracy
when compared with pathologist 2.

TABLE XI: Testing Accuracy When slides were common between
Training and Validation sets but different overlap. Only Pathlogist
2. Dataset II.

2) Classification models like resnet-18 and resnet-34 tend to
overfit the training data when compared with mobilenet and
MNAS-net. MNAS-net and mobile-net has less training ac-
curacy compared to resnet-18 and resnet-34 but performed
well on testing data.

3) resnet based backbone for u-net architecture performs better
than simple u-net. Extensions of u-net architecture also
performed better in terms of F1-Score and IOU score.

4) Main 2 classes for misclassification of patches were Glea-
son grade 3 and Grade 4.

5) Using cross-entropy loss or Dice loss for segmenation
models didn’t perform so well. BCE loss for segmentation
gave much better results.

V. FUTURE WORK

Due to limitation of time some ideas that weren’t implemented
and can be explored in future study can be :-
1) exploring more backbones for segmentation encoder of u-net
architecture. Maybe Mobile net or MNAS-net which performed

Model Testl Accu | Test2 Accu | Testl ROC | Test2 ROC
resnet18 0.6144 0.5214 0.7097 0.6703
resnet34 0.7022 0.6600 0.7774 0.7445

MobileNet 0.6348 0.5743 0.7936 0.7565
MNASnet 0.6628 0.6278 0.7835 0.7437

Models No Overlap Overlap 128 pixel

Test Accu | Test ROC | Test Accu | Test ROC
resnet18 0.6144 0.7097 0.6231 0.8052
resnet34 0.7022 0.7774 0.5875 0.8050
MobileNet 0.6348 0.7936 0.4222 0.7167
MNASnhet 0.6628 0.7835

TABLE IX: Testing Accuracies and ROC for different pathologist
When no slides were common between Training and Validation
sets. Dataset II.“Test1’ corresponds to testing accuracy compared
with pathologist 1, and ‘Test2’ corresponds to testing accuracy
when compared with pathologist 2.

C. Observations

The following observation were made during the training and
testing process for these datasets :-

1) Overlapping patches didn’t help classification models in

getting to a better accuracy but helped in segmentation
models.

TABLE XII: Testing Accuracy When slides were no common
slides between Training and Validation sets but different overlap.
Only Pathlogist 1. Dataset II.

Models No Overlap Overlap 128 pixel

Test Accu | Test ROC | Test Accu | Test ROC
resnet18 0.5214 0.6703 0.6129 0.7676
resnet34 0.6600 0.7445 0.6332 0.7658
MobileNet 0.5743 0.7565 0.4218 0.6885
MNASnet 0.6278 0.7437

TABLE XIII: Testing Accuracy When no slides were common be-
tween Training and Validation sets but different overlap. Dataset
II. Pathologist 2.



fairly well on classification type dataset, might also work well
for segmentation models.

2) Data augmentation for segmentation were not explored in this
study becuase patch segmentation gave huge amounts of data to
work with, but with data augmentation better trained models will
be achieved.

3) More experiments on Fusion type architecture.

4) Trying different loss functions like Focal loss or Jaccard loss.
5) More experiment on patch type classification with different
classification architectures.

6) Pretraining a model on one dataset and then retraining on other
dataset, this way we can get the advantage of both datasets and
maybe get a better generalizable model.
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