
CS 6190 Spring 2022, Midterm Project Report

Normalizing Flows: Reproduction of results
from Real-NVP normalizing flows

Tushar Kataria
Scientific Computing Institute ,University of Utah

Email: tushar.kataria@utah.edu∗

Abstract—In this study, review of latest results
on normalizing flows and reconstruction of results
from Real-NVP[6] is planned and partially executed.
Extensive study on variations of different parameters
like number of concatenated normalizing flows,
activation functions, number of samples for target
distribution, noise in input samples, masks variability
and complexity of normalizing flow models was
done and observations made. Normalizing flows
for Image data was not completed so it’s set as
future work. The github directory for the code is
https://github.com/tushaarkataria/NormalizingFlowExperiments

Keywords—Normalizing Flows, Probabilistic Mod-
elling and Inference, Tutorial

I. Introduction

Finding the exact probability distribution of the input
data is an important problem in probabilistic mod-
elling. Many of the famous techniques(Bayesian mod-
elling, MAP, Boltzman machines etc) for finding exact
distribution are tractable only for a few 100 dimensions
or are really hard to solve for complex models. But with
increasingly complex applications and huge data size
there is a need for models which can work better for
high dimensional data(images).

Deep generative modelling via GAN’s [1] seems to
give good answers for finding the distribution of train-
ing data, but it comes with it’s own problems. First
of all, the mapping between data to distribution and
vice-versa is not invertible/bijective, so we don’t have
an explanation of why a particular sampled point in
a distribution would relate to the image/data thus
generated. The exact evaluation of sampled points is
not possible. Other issues include mode collapse, pos-
terior collapse due to training instability and also huge
amount of data required for the networks to converge
to a good solution.

Normalizing flows(NFs) [2], [3] [6] are another fam-
ily of generative modelling which addresses some of
the shortcomings in GAN modelling. NF’s can model
both sampling and density evaluation in an exact and
efficient manner. Normalizing flow are based on the

properties of transformation of a probability density
which makes the modelling easier to understand and
human interpret able. Because of the these advantages,
NF’s have already been used in many application such
as image generation [4], image super resolution [5] [6]
and many more.

But with all the advantages of normalizing flows,
there are still issues. Although both sampling and den-
sity estimation is theoretically possible, it’s not always
track able for all types of normalizing flows. The other
major disadvantage is that because of the nature of bi-
jective transformations and invertibility, the dimention-
ality of data to which normalizing flows can be applied
it still limited. GAN’s can generate images of size 512
and 1024 but NF’s images generation has not reached
that dimentionality yet.

In this paper, section II will cover the basics of the
Normalizing flows. Section III will cover the exper-
iments done till now and Section IV will cover the
Experiments planned for rest of the semester.

II. Section II : Normalizing Flows

Let us assume that we have a random variable x
whose probability density is known and trackable, de-
noted by px(x). Let g be an invertible function which
transforms the random variable x to y.

y = g(x)

One can easily compute the probability density of y

using the following equation

py(y) = px(f(y))|detD(f(y))| (1)

where f is the inverse of g and Df(y) = ∂f
∂y is the

jacobian of f. We can do the above for any set of g and
f invertible functions. This is the main basis for nor-
malizing flows modelling. One such function is called
a flow, and because most of the time our base density
of gaussian normal, we say that we are normalizing
the data distribution, hence the term normalizing flows.
One normalizing flow maybe enough for less complex
data distribution but for high dimensional data, we
generally need complex models.Copyright Notice

CS 6190 Spring 2022, Midterm Project Report

We use another property of invertible functions,
composition propertry. Which states that inverse of
composition of the 2 invertible function is composition
of inverse. Let g1, g2 be invertible function with f1 and
f2 as inverses.

(g1 ◦ g2)−1 = f1 ◦ f2

The determinant of jacobain is multiplication of all the
jocobians.

detDf(f1 ◦ f2) = detDf1(x1) ∗ detDf2(x2)

We can extend this definition to any number of compo-
sitions. Making the normalizing flow model arbitrary
complex which helps with modelling of a variety of
complex datasets.

The one major issue with above equation 1 is in-
verse of matrix takes O(n3) operation which makes
the above calculation really time consuming for higher
dimensions. But most of the normalizing flows model
side step that huge computation cost by designing the
models where matrix inverse is not computed. Most
of the models do this by creating the model in such
a way that the jocobian matrix is a triangular matrix,
making the determinant and inverse computating a set
of multiplications and division.

A. Real NVP

This study will focus on recreating the results from
Real-NVP [6]. Real NVP stands for real -valued non
volume reserving transformation. These are a set of
invertible, learnable transformation proposed in the
paper. As explained in equation 1 above the trans-
formation of the probability density is modelled by
multiplication of 2 terms, function and it’s Jacobian
matrix. This paper presents a way to model these in
a very simple and intuitive manner.

Figure 1: Computational Graphs for forward and
inverse computation of the Real NVP model

1) Modeling of Real NVP :- Coupling Layers: Let xbe
an N dimensional vector for which we are writing a
real-NVP normalizing flow. Let us split x in 2 set’s of

inputs x1andx2 with x1 containg first d < N dimensions
and x2 containing the remaining ones. The forward
propagation which is defined above is

y1 = x1

y2 = x2 ◦ exp(s(x1)) + t(x1)

Where s and t are scaling and translation functions.
Due to such a definition of the transformation, the
jacobian is

∂y

∂xT
=

[
Id 0
∂y2

x1
diag(exp[s(x1)])

]
As jacobian is a upper triangular matrix so we can
easily computer the determinant is

∏
exp(s(x1)). If we

take log on both side, for optimization of posterior
probability we get jacobian as

∑
s(x1).

III. Section III : Experiments Done and Analysis

Code was written separately for both 2-dimensional
distribution matching and image data. My code for im-
age data is not working correctly and still in debugging
stage. Debugging of correct implementation was done
with help from github directories [7] [8]

A. 2D Distribution Matching

A variety of experiments were done on 4 distributions
with 2D data. distributions were two-moons, circles
and 2 different spiral distributions. Results for two-
moons are shown in 2, circles is shown in 3 and spiral
densities are show in figures 4 5. The parameters of
variations were, number of concatenated flows(ranging
from 3 to 6), complexity of each flow from 2 interme-
diate layers to 6 intermediate layer, number of input
samples target distribution provided, noise in input
samples and activation function either relu, leaky relu
or tanh. Analysis of the results is as flows

• Number of Concatenated flows Simple distribu-
tions like two moons and spiral one require less
normalizing flow. But one flow is not enough to
model all the transformation required for matching
distributions. Even one flow with highly complex
model was not able to do a good job for two-
moons and failed miserably for spiral distribution.
Number of concatenated normalizing flows is a
hyper parameter and needs to be tuned for each
distribution separately. But for 2-D distributions
below, most of the time, 6 concatenated normal-
izing flows was optimal scenario.

• Complexity of each flow Increase the complexity
of flows doesn’t have a huge change in the per-
formance of the model, concatenation of flows is
more important.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html

CS 6190 Spring 2022, Midterm Project Report

• Number of input samples target distribution
Increasing the number of samples for target dis-
tribution increased the time complexity but the
model converged quickly and sometimes even with
less number of concatenated flows(4 number of
concatenated flows for two moons.)

• Noise in input samples More noise in the input
samples, the more variations in the distribution,
harder for the model to get a correct underlying
distribution. But most of the time the final target
distribution is matched to the noisy distribution.
So if the noise if too high in input samples normal-
izing flow with not be able to get the underlying
distribution no matter the model complexity.

• Activation function ReLU and Leaky ReLU per-
formed in a similar fashion, but models with tanh
activations didn’t converge that well.

• Mask variability If the mask’s of concatenated
normalizing flows are covering only one dimen-
sion, then the model doesn’t converge. Like for
example if x1 in Figure 1 is always taken for
bypassing the modeling. Masks in the concatened
normalizing flows need to change for good con-
vergence. So, if the sequence of masks of the
concatenated normalizing flows covers both the
dimensions, the model generally converges.

The above model was implemented and tested for
different base and target densities. Example outputs
are given below in figures 2 3.

Figure 2: Two Moons example, densities samples at
different iterations to see convergence. Number of

flows used is 6

Figure 3: Circle example, densities samples at
different iterations to see convergence, Number of

flows used is 8

Figure 4: Spiral example, densities samples at
different iterations to see convergence, Number of

flows used is 6

IV. Future Work and Conclusion

It is clear from the experiments that one normalizing
flow model is not enough even for simple distribution,
concatenation of multiple normalizing flows is key to
convergence and correct modeling of the target distri-
bution.

Although I have much better understanding of the
normalizing flows having read a fair few papers in the

CS 6190 Spring 2022, Midterm Project Report

Figure 5: Spiral example 2, densities samples at
different iterations to see convergence, Number of

flows used is 8

domain. This project fell short of what i had planned to
complete. I plan to continue this work for the summer
so that i have a better understanding of how these
model work and converge for images.

I have a better understanding of normalizing flows
with all the variety of experiments executed but I hope
to find new observation and new tricks in convergence
of normalizing flow for image data.

References

[1] Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. "Generative adversarial nets." Advances in neural in-
formation processing systems 27 (2014).

[2] Papamakarios, George, Eric Nalisnick, Danilo Jimenez Rezende,
Shakir Mohamed, and Balaji Lakshminarayanan. "Normalizing
flows for probabilistic modeling and inference." Journal of Ma-
chine Learning Research 22, no. 57 (2021): 1-64.

[3] Kobyzev, Ivan, Simon JD Prince, and Marcus A. Brubaker. "Nor-
malizing flows: An introduction and review of current methods."
IEEE transactions on pattern analysis and machine intelligence
43, no. 11 (2020): 3964-3979.

[4] Ho, Jonathan, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter
Abbeel. "Flow++: Improving flow-based generative models with
variational dequantization and architecture design." In Interna-
tional Conference on Machine Learning, pp. 2722-2730. PMLR,
2019.

[5] Lugmayr, Andreas, Martin Danelljan, Luc Van Gool, and Radu
Timofte. "Srflow: Learning the super-resolution space with nor-
malizing flow." In European conference on computer vision, pp.
715-732. Springer, Cham, 2020.

[6] Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. "Den-
sity estimation using real nvp." arXiv preprint arXiv:1605.08803
(2016).

[7] real-nvp coded by chrischute, https://github.com/chrischute/real-
nvp

[8] real-nvp coded by fm2, https://github.com/fmu2/realNVP

